翻訳と辞書 |
Euler's conjecture (Waring's problem) : ウィキペディア英語版 | Waring's problem In number theory, Waring's problem asks whether each natural number ''k'' has an associated positive integer ''s'' such that every natural number is the sum of at most ''s'' ''k''th powers of natural numbers. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward Waring, after whom it is named. Its affirmative answer, known as the Hilbert–Waring theorem, was provided by Hilbert in 1909. Waring's problem has its own Mathematics Subject Classification, 11P05, "Waring's problem and variants." ==Relationship with Lagrange's four-square theorem== Long before Waring posed his problem, Diophantus had asked whether every positive integer could be represented as the sum of four perfect squares greater than or equal to zero. This question later became known as Bachet's conjecture, after the 1621 translation of Diophantus by Claude Gaspard Bachet de Méziriac, and it was solved by Joseph-Louis Lagrange in his four-square theorem in 1770, the same year Waring made his conjecture. Waring sought to generalize this problem by trying to represent all positive integers as the sum of cubes, integers to the fourth power, and so forth, to show that any positive integer may be represented as the sum of other integers raised to a specific exponent, and that there was always a maximum number of integers raised to a certain exponent required to represent all positive integers in this way.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Waring's problem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|